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This work is concerned with the instability and

unbalance response of dissymmetric rotor-bearing systems

containing periodic coefficients when modeling produces

matrices with a large number of degrees of freedom. It

is important to solve the equations and then to predict

the dynamic behavior of the system. This can be done

knowing the instability areas, and the unbalance

response in the stable areas. One deals here with a

large number of equations and a reduction of the number

of degrees of freedom of the system is achieved through

a pseudo modal method. This method is shown to give

satisfactory results.

INTRODUCTION

It is now more and more necessary to predict accurately the dynamic

behavior of rotor bearings systems : natural frequencies as a function of

the speed of rotation which gives the critical speeds and instability zones

and response to unbalance and nonsynchronous forces.

For most of rotors containing a large number of degrees of freedom,

calculations do not pose any problem today. Many authors, as [13, [23, E33,

4], have shown that, using a method based either on substructuring or on a

modal reduction, the number of degrees of freedom can be lowered slgnifi-

cately and the results are without significant loss of accuracy.

For dissymmetric rotors, it happens sometimes that the e_uations lead

to periodic coefficients. In this case, some authors, as [5], [6], [7], [82

give methods to detect instability zones (mainly transfer-matrlx or

infinite determinant methods) and to calculate step by step the unbalance

response. But usually, these methods are applied on systems having a few

degrees of freedom (up to 20). The purpose of this study is to develop for

large periodic systems, a method which can be used to obtain the dynamical

behavior of the systems. In a first part, a pseudo-modal method adapted to

the resolution of periodic differential equations is presented. In a second

part an industrial application containing 96 degrees of freedom is con-

sidered. The influence of the number of modes on the results, and the

accuracy of the methods are discussed.

PSEUDO-MODAL METHOD

The systeme to be solved can be written as :

MX'" + A(t) X" + K(t)X = F(t) (1)
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M, A, K are n order matrices and it has been shown [83 that A(t) and K(t)

can be written as :

A(t) = A + A I sin 2_t + A 2 cos 2fit (2)o

K(t) = Ko + K I sin 2_t + K 2 cos 2_t (3)

The pseudo-modal method consists in using a '_oda1" base of the system

MX'" +KX = O (4)

The modal base is calculated from the system at rest (_ = O) and at

the initial instant (t = 0). In these conditions, there are neither

periodic coefficients, nor gyroscopic effects. Furthemore, the damping of

the bearings is omited, and the non symmetric terms of the stiffness matrix

K are symmetrised :

K = K + K 2 (5)o

= sym (K) (6)

The modal base # is built with the lowest Z modes of (4), (Z << n).

The relation between the degrees of freedom of the system and the modal

parameters is :

X = _q (7)

Equation (I) with (2), (3) and (7) leads to :

M # q'" + (Ao + A 1 sin 2fit + A 2 sin 2fit) # q° + (Ko + K I sin 2_t

+ K 2 cos 2fit) # q = F

and premultiplying by #t, (8) can be written as :

(8)

m q'" + (ao+a I sin 2flt+a 2 cos 2_t)q" + (ko+k I sin 2_t+k 2 cos 2_t)q = f (9)

with

m _t : _t A1 _ ; a2 : _t A2: tM ;a ° : ; al

k : _t K _ ; kl : _t KI _ ; k2 = _t K2 _ ; f : _t F
o o

SOLUTION OF THE EQUATIONS

(lO)

Instabilities and unbalance response come from the reduced system (9),

and from (7). The method used is that detailed in [8_. Here the basic

principles are shown.

* Instabilities are found with the resolution of :

oo •

m q + a q + kq = O with : (Ii)

a = a + a sin 2_t + a_ cos 2£t (12)
o I 2

k = ko + k I sin 2_t + k 2 cos 2_t (13)

(ll) is transformed into :
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dp

dt

B p (14)

with

and

p - (15)

B -

O I

-I-m- 1k -m a
(16)

B is a periodic matrix, of period T. The period T of the periodic coeffi-

cients is divided in s intervals of length h = T/s. System (14) is consi-

dered to be constant on each interval and a matrix T. connecting displa-
cements and velocities at the instants ih and (i-1)h ca_ be calculated. The

general matrix connecting q and q" over a period T is obtained by the

product of matrices :

Tf = Ts_ I ... T3.... Tj_I TI To (17)

and

p(T) = Tf p(O) (18)

The 2.Z complex eigenvalues of Tf are representative of the stability
of the system. If they are all less than unity the system is stable. Here

each matrix T. is calculated with a Newmark formulation and the expression
of T. is givenJbelow.

3

D -I F D-1 E

T°

J

2 2 _IE_--(D-IF-l) --D I

h h

(19)

with

4m 2c

D = _ + j+1 + k. (20)
h 2 h 3+1

4m

E = -- + C - c. (21)
h j+1 3

4m 2c

F = __ + j+l - k. (22)
h 2 h 3

Instability zones are obviously the same as those which would be

obtained from (1).

* Unbalance response is the solution of (9). Numerical resolution is

made with a Ne_xnark formulation and the initial conditions are chosen as :

t = O q(O) = O (23)
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q'to) = 0 

q"(0)  = Tn-l f ( 0 )  

( 2 4 )  

( 2 5 )  

APPLICATION 

A r o t o r  o f  a 220 KW Steam Compressor ,  ( F i g . 1 )  i s  s t u d i e d .  The r o t o r  
c o n t a i n s  symmetr ic  s h a f t  and d i s k s ,  and d i s symmet r i c  b e a r i n g s .  C a l c u l a t i o n s  
are a t  f i r s t  made i n  a f i x e d  r e f e r e n c e  frame where e q u a t i o n s  h a v e  c o n s t a n t  
c o e f f i c i e n t s  and  a r e  o b t a i n e d  wi th  a f i n i t e  e lement  model and a r e  e a s i l y  
s o l v e d  [SI. Then, c a l c u l a t i o n s  a r e  made i n  a r o t a t i n g  r e f e r e n c e  frame : t h e  
e q u a t i o n s  h a v e  p e r i o d i c  c o e f f i c i e n t s  and a r e  a l s o  o b t a i n e d  w i t h  a f i n i t e  
e l emen t  model.  The compar ison  o f  t h e  r e s u l t s  i n  t h e  two d i f f e r e n t  f r a m e s  
shows t h e  i n t e r e s t  o f  t h e  method p roposed .  

F i g .  1 : 2 2 0  KW Steam Compressor Rotor  

1 - Description of the mode1 

The r o t o r  i s  modeled w i t h  23 f i n i t e  e l e m e n t s ,  a s  shown i n  F i g . 2 .  Two 
c a l c u l a t i o n s  a r e  made w i t h  d i f f e r e n t  m a t e r i a l s  f o r  t h e  d i s k s .  They are i n  
Aluminium for r o t o r  A ,  and i n  s t e e l  f o r  r o t o r  B.  
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Fig. 2 : Modelisation of the rotor

2 - Calculations

The two rotors are used for different purposes. For rotor A (aluminium

disks) the unbalance response can be performed over 4 critical speeds

because the motion is always stable in the operating range (0 - 60000 RPM).

For rotor B, instabilities appear near 20.000 RPM. So the t_ configura-

tions will provide satisfactory tests both for instabilities and unbalance

response.

3 - Results

* Instabilities

They appear at 21300 RPM in the fixed reference frame. In the rotating

one the instability with 14 modes appears at 19700 RPM.

* Unbalance response

Fig. 3, 4, 5 represent the maximum of the unbalance response at node

I. Different number of modes (6-10-14) are considered, and compared to the

results in the fixed-reference frame. The resolution in the rotating

reference frame with reduced coordinates introduces a slight gap in the

frequencies. This creates differences in the amplitude to up to I0 _ in the

critical frequencies zones. Only the permanent solution is compared, and

the number of rotations of the rotor necessary to obtain the permanent

solution depends a lot on its rotating speed.

CONCLUSION

The dynamic behavior of periodic coefficient large system is predicted

here with a pseudo modal method, using a significant reduction of the

number of degrees of freedom.

Differences which are shown in the industrial example presented may be
inherent to the numerical calculations.
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NOMENCLATURE

A

a
B

E

F

h

I

K

k

£

M

m

n

P

q

s

T

"Damping" matrix [n.n_ containing periodic coefficients

modal damping matrix [£._]

matrix which transforms a [_'£3 second order differentiel

system into in [2Z_2_] first order differential system

Young modulus (N/m 2) _

unbalance force vector

time interval h = T/s

unity matrix

"stiffness" matrix In.n] containing periodic coefficients

modal stiffness matrix [£.Z]
number of modes taken into acount

mass matrix In.n]

modal mass matrix [£.£]

number of degrees of freedom

vector [2£] containing modal displacements and vitess

modal displacement vector [_]

number of intervals in a period T

period of coefficients of differential equations
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T
Xf
b

P
v

•o

transfer matrix over one period T

displacements vector In]

modal base buil,t with the first E modes

rotation speed of _he rotor

volumic mass (Kg/m °)

Pois son coefficient

d/d t

dt2/d t 2
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